3D Bioplotter Research Papers

Displaying all papers about Chromium Oxide (2 results)

Microstructure and mechanical properties of 3D ink-extruded CoCrCuFeNi microlattices

Acta Materialia 2022 Volume 238, Article 118187

Microlattices with orthogonal 0-90° architecture are 3D-extrusion printed from inks containing a blend of oxide powders (Co3O4, CuO, Fe2O3, and NiO) and metal powder (Cr). Equiatomic CoCrCuFeNi microlattices with ∼170 µm diameter struts are then synthesized by H2-reduction of the oxides followed by sintering and interdiffusion of the resulting metals. These process steps are studied by in-situ synchrotron X-ray diffraction on single extruded microfilaments (lattice struts) with ∼250 µm diameter. After reduction and partial interdiffusion at 600 ˚C for 1 h under H2, filaments consist of lightly-sintered metallic particles with some unreduced Cr2O3. A reduced, nearly fully densified (porosity: 1.6 ± 0.7%)…

3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices

Nature Communications 2019 Volume 10, Article number: 904

Additive manufacturing of high-entropy alloys combines the mechanical properties of this novel family of alloys with the geometrical freedom and complexity required by modern designs. Here, a non-beam approach to additive manufacturing of high-entropy alloys is developed based on 3D extrusion of inks containing a blend of oxide nanopowders (Co3O4 + Cr2O3 + Fe2O3 + NiO), followed by co-reduction to metals, inter-diffusion and sintering to near-full density CoCrFeNi in H2. A complex phase evolution path is observed by in-situ X-ray diffraction in extruded filaments when the oxide phases undergo reduction and the resulting metals inter-diffuse, ultimately forming face-centered-cubic equiatomic CoCrFeNi alloy. Linked to the phase evolution…